En análisis numérico, el polinomio de Lagrange, es una forma de presentar el polinomio que interpola un conjunto de puntos dado. Dado que existe un único polinomio interpolador para un determinado conjunto de puntos, resulta algo engañoso llamar a este polinomio el polinomio interpolador de Lagrange. Un nombre más apropiado es interpolación polinómica en la forma de Lagrange.
\begin{align} (x_{0}, y_{0}), ..., (x_{k}, y_{k}) \end{align} \begin{align} L(x) = \sum_{j=0}^{k} y_{j}l_{j}(x) \end{align} \begin{align} l_{j}(x) = \prod_{i = 0, i\neq j}^{k} \frac{x - x_{i}}{x_{j} - x_{i}} = \frac{x - x_{0}}{x_{j} - x_{0}}... \frac{x - x_{j-1}}{x_{j} - x_{j-1}} \frac{x - x_{j+1}}{x_{j} - x_{j+1}} ... \frac{x - x_{k}}{x_{j} - x_{k}} \end{align}
Resultado: